Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 15: 1354735, 2024.
Article in English | MEDLINE | ID: mdl-38384467

ABSTRACT

Folate receptors can perform folate transport, cell adhesion, and/or transcription factor functions. The beta isoform of the folate receptor (FRß) has attracted considerable attention as a biomarker for immunosuppressive macrophages and myeloid-derived suppressor cells, however, its role in immunosuppression remains uncharacterized. We demonstrate here that FRß cannot bind folate on healthy tissue macrophages, but does bind folate after macrophage incubation in anti-inflammatory cytokines or cancer cell-conditioned media. We further show that FRß becomes functionally active following macrophage infiltration into solid tumors, and we exploit this tumor-induced activation to target a toll-like receptor 7 agonist specifically to immunosuppressive myeloid cells in solid tumors without altering myeloid cells in healthy tissues. We then use single-cell RNA-seq to characterize the changes in gene expression induced by the targeted repolarization of tumor-associated macrophages and finally show that their repolarization not only changes their own phenotype, but also induces a proinflammatory shift in all other immune cells of the same tumor mass, leading to potent suppression of tumor growth. Because this selective reprogramming of tumor myeloid cells is accompanied by no systemic toxicity, we propose that it should constitute a safe method to reprogram the tumor microenvironment.


Subject(s)
Folate Receptor 2 , Neoplasms , Humans , Tumor Microenvironment , Neoplasms/metabolism , Macrophages , Folic Acid/metabolism
3.
Free Radic Biol Med ; 184: 66-73, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35398493

ABSTRACT

Oxidative stress has been shown to play a critical pathogenic role in functional loss after spinal cord injury (SCI). As a direct result of oxidative stress, lipid peroxidation-derived aldehydes have emerged as key culprits that sustain secondary injury and contribute significantly to pathological outcomes. Acrolein, a neurotoxin, has been shown to be elevated in SCI and can result in post-SCI neurological deficits. Reducing acrolein has therefore emerged as a novel and effective therapeutic strategy in SCI. Previous studies have revealed that hydralazine, an FDA approved blood pressure lowering medication, when administered after SCI shows strong acrolein scavenging capabilities and significantly improves cellular and behavioral outcomes. However, while effective at scavenging acrolein, hydralazine's blood pressure lowering activity can have a detrimental impact on neurotrauma patients. Here, our goal was to preserve the acrolein scavenging capability while mitigating the effect of hydralazine on blood pressure. We accomplished this using a folate-targeted delivery system to deploy hydralazine to the folate receptor positive inflammatory site of the cord injury. Using a model of rat SCI, we found that this system is effective for targeting the injury site, and that folate targeted hydralazine can scavenge acrolein without significantly impacting blood pressure.


Subject(s)
Acrolein , Spinal Cord Injuries , Animals , Folic Acid , Humans , Hydralazine/pharmacology , Hydralazine/therapeutic use , Lipid Peroxidation/physiology , Rats , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/pathology
4.
Neural Regen Res ; 17(7): 1505-1511, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34916435

ABSTRACT

Lipid peroxidation-derived aldehydes, such as acrolein, the most reactive aldehyde, have emerged as key culprits in sustaining post-spinal cord injury (SCI) secondary pathologies leading to functional loss. Strong evidence suggests that mitochondrial aldehyde dehydrogenase-2 (ALDH2), a key oxidoreductase and powerful endogenous anti-aldehyde machinery, is likely important for protecting neurons from aldehydes-mediated degeneration. Using a rat model of spinal cord contusion injury and recently discovered ALDH2 activator (Alda-1), we planned to validate the aldehyde-clearing and neuroprotective role of ALDH2. Over an acute 2 day period post injury, we found that ALDH2 expression was significantly lowered post-SCI, but not so in rats given Alda-1. This lower enzymatic expression may be linked to heightened acrolein-ALDH2 adduction, which was revealed in co-immunoprecipitation experiments. We have also found that administration of Alda-1 to SCI rats significantly lowered acrolein in the spinal cord, and reduced cyst pathology. In addition, Alda-1 treatment also resulted in significant improvement of motor function and attenuated post-SCI mechanical hypersensitivity up to 28 days post-SCI. Finally, ALDH2 was found to play a critical role in in vitro protection of PC12 cells from acrolein exposure. It is expected that the outcome of this study will broaden and enhance anti-aldehyde strategies in combating post-SCI neurodegeneration and potentially bring treatment to millions of SCI victims. All animal work was approved by Purdue Animal Care and Use Committee (approval No. 1111000095) on January 1, 2021.

5.
BMC Musculoskelet Disord ; 22(1): 894, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34670524

ABSTRACT

BACKGROUND: Acrolein is a known pro-inflammatory toxic aldehyde, propagating cellular damage and tissue inflammation in humans and animal models of various diseases. Osteoarthritis (OA) has a significant inflammatory component; however, presence of acrolein in synovial fluid of joints with OA has not been previously reported. The first aim of this study was to evaluate evidence of acrolein in the synovial fluid of dogs with OA as well as in Control joints. The second aim was to determine if evidence of acrolein can be detected in synovial fluid samples that have been in a frozen state for long periods of time. METHODS: In this pilot clinical study, synovial fluid samples were prospectively collected (i.e., New samples) from a single joint of both clinically healthy (New Control, n = 5) and dogs with OA (New OA, n = 16) and frozen until the time of analysis. Additionally, frozen synovial fluid samples from a biobank (i.e., Old samples) were used to evaluate ability to detect evidence of acrolein in long-term stored samples (median of 4.89 years) in Old Control (n = 5) and Old OA (n = 5) samples. Measurements of acrolein in all synovial fluid samples was based on detection of its major protein adduct, N ε - (3-formyl-3, 4-dehydropiperidino)lysine (FDP-lysine), using the western blot method. Synovial fluid matrix metalloproteinase 2 (MMP2) was measured in all samples using the western blot method as a positive control of OA inflammation. RESULTS: Acrolein-lysine adduct was detected in both Control (n = 10) and OA (n = 21) groups in both Old and New samples. Acrolein-lysine adduct and MMP2 were detectable at a lower level in the Old compared to New synovial fluid samples; however, the differences were not statistically significant (p > 0.1). The measured MMP2 levels were significantly higher in the OA compared to Control group samples (p = 0.033), but not for acrolein-lysine adduct (p = 0.30). CONCLUSIONS: This study confirmed evidence of acrolein in canine synovial fluid of both OA and Control groups. Freezing of synovial fluid for up to 5 years does not appear to significantly affect the ability to detect acrolein-lysine adduct and MMP2 in these samples.


Subject(s)
Osteoarthritis , Synovial Fluid , Acrolein , Animals , Biomarkers , Dogs , Matrix Metalloproteinase 2 , Osteoarthritis/diagnosis
6.
Transl Neurodegener ; 10(1): 13, 2021 04 28.
Article in English | MEDLINE | ID: mdl-33910636

ABSTRACT

BACKGROUND: The mechanisms underlying lesions of dopaminergic (DA) neurons, an essential pathology of Parkinson's disease (PD), are largely unknown, although oxidative stress is recognized as a key factor. We have previously shown that the pro-oxidative aldehyde acrolein is a critical factor in PD pathology, and that acrolein scavenger hydralazine can reduce the elevated acrolein, mitigate DA neuron death, and alleviate motor deficits in a 6-hydroxydopamine (6-OHDA) rat model. As such, we hypothesize that a structurally distinct acrolein scavenger, dimercaprol (DP), can also offer neuroprotection and behavioral benefits. METHODS: DP was used to lower the elevated levels of acrolein in the basal ganglia of 6-OHDA rats. The acrolein levels and related pathologies were measured by immunohistochemistry. Locomotor and behavioral effects of 6-OHDA injections and DP treatment were examined using the open field test and rotarod test. Pain was assessed using mechanical allodynia, cold hypersensitivity, and plantar tests. Finally, the effects of DP were assessed in vitro on SK-N-SH dopaminergic cells exposed to acrolein. RESULTS: DP reduced acrolein and reversed the upregulation of pain-sensing transient receptor potential ankyrin 1 (TRPA1) channels in the substantia nigra, striatum, and cortex. DP also mitigated both motor and sensory deficits typical of PD. In addition, DP lowered acrolein and protected DA-like cells in vitro. Acrolein's ability to upregulate TRPA1 was also verified in vitro using cell lines. CONCLUSIONS: These results further elucidated the acrolein-mediated pathogenesis and reinforced the critical role of acrolein in PD while providing strong arguments for anti-acrolein treatments as a novel and feasible strategy to combat neurodegeneration in PD. Considering the extensive involvement of acrolein in various nervous system illnesses and beyond, anti-acrolein strategies may have wide applications and broad impacts on human health.


Subject(s)
Acrolein/metabolism , Dimercaprol/pharmacology , Neuroprotective Agents/pharmacology , Parkinson Disease, Secondary/drug therapy , TRPA1 Cation Channel/metabolism , Animals , Behavior, Animal , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Dopaminergic Neurons/drug effects , Hydroxydopamines , Male , Motor Activity/drug effects , Neostriatum/drug effects , Neostriatum/metabolism , Pain/etiology , Pain Measurement/drug effects , Parkinson Disease, Secondary/chemically induced , Parkinson Disease, Secondary/psychology , Rats , Rats, Sprague-Dawley , Substantia Nigra/drug effects , Substantia Nigra/metabolism
7.
Mol Cell Neurosci ; 88: 70-82, 2018 04.
Article in English | MEDLINE | ID: mdl-29414104

ABSTRACT

Growing evidence suggests that oxidative stress plays a critical role in neuronal destruction characteristic of Parkinson's disease (PD). However, the molecular mechanisms of oxidative stress-mediated dopaminergic cell death are far from clear. In the current investigation, we tested the hypothesis that acrolein, an oxidative stress and lipid peroxidation (LPO) product, is a key factor in the pathogenesis of PD. Using a combination of in vitro, in vivo, and cell free models, coupled with anatomical, functional, and behavioral examination, we found that acrolein was elevated in 6-OHDA-injected rats, and behavioral deficits associated with 6-OHDA could be mitigated by the application of the acrolein scavenger hydralazine, and mimicked by injection of acrolein in healthy rats. Furthermore, hydralazine alleviated neuronal cell death elicited by 6-OHDA and another PD-related toxin, rotenone, in vitro. We also show that acrolein can promote the aggregation of alpha-synuclein, suggesting that alpha-synuclein self-assembly, a key pathological phenomenon in human PD, could play a role in neurotoxic effects of acrolein in PD models. These studies suggest that acrolein is involved in the pathogenesis of PD, and the administration of anti-acrolein scavengers such as hydralazine could represent a novel strategy to alleviate tissue damage and motor deficits associated with this disease.


Subject(s)
Acrolein/pharmacology , Cell Death/drug effects , Dopaminergic Neurons/drug effects , Parkinson Disease/metabolism , alpha-Synuclein/metabolism , Animals , Cell Line , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Oxidative Stress/drug effects , Parkinson Disease/drug therapy , Rats , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/metabolism , Substantia Nigra/drug effects , Substantia Nigra/metabolism
8.
Front Neurol ; 8: 700, 2017.
Article in English | MEDLINE | ID: mdl-29326654

ABSTRACT

Status epilepticus (SE) is defined by the occurrence of prolonged "non-stop" seizures that last for at least 5 min. SE provokes inflammatory responses including the activation of microglial cells, the brain's resident immune cells, which are thought to contribute to the neuropathology and pathophysiology of epilepsy. Microglia are professional phagocytes that resemble peripheral macrophages. Upon sensing immune disturbances, including SE, microglia become reactive, produce inflammatory cytokines, and alter their actin cytoskeleton to transform from ramified to amoeboid shapes. It is widely known that SE triggers time-dependent microglial expression of pro-inflammatory cytokines that include TNFα and IL-1ß. However, less is known in regards to the spatiotemporal progression of the morphological changes, which may help define the extent of microglia reactivity after SE and potential function (surveillance, inflammatory, phagocytic). Therefore, in this study, we used the microglia/macrophage IBA1 marker to identify and count these cells in hippocampi from control rats and at 4 h, 3 days, and 2 weeks after a single episode of pilocarpine-induced SE. We identified, categorized, and counted the IBA1-positive cells with the different morphologies observed after SE in the hippocampal areas CA1, CA3, and dentate gyrus. These included ramified, hypertrophic, bushy, amoeboid, and rod. We found that the ramified phenotype was the most abundant in control hippocampi. In contrast, SE provoked time-dependent changes in the microglial morphology that was characterized by significant increases in the abundance of bushy-shaped cells at 4 h and amoeboid-shaped cells at 3 days and 2 weeks. Interestingly, a significant increase in the number of rod-shaped cells was only evident in the CA1 region at 2 weeks after SE. Taken together, these data suggest that SE triggers time-dependent alterations in the morphology of microglial cells. This detailed description of the spatiotemporal profile of SE-induced microglial morphological changes may help provide insight into their contribution to epileptogenesis.

9.
Sci Rep ; 6: 24988, 2016 05 04.
Article in English | MEDLINE | ID: mdl-27143585

ABSTRACT

Status epilepticus (SE) triggers pathological changes to hippocampal dendrites that may promote epileptogenesis. The microtubule associated protein 2 (Map2) helps stabilize microtubules of the dendritic cytoskeleton. Recently, we reported a substantial decline in Map2 that coincided with robust microglia accumulation in the CA1 hippocampal region after an episode of SE. A spatial correlation between Map2 loss and reactive microglia was also reported in human cortex from refractory epilepsy. New evidence supports that microglia modulate dendritic structures. Thus, to identify a potential association between SE-induced Map2 and microglial changes, a spatiotemporal profile of these events is necessary. We used immunohistochemistry to determine the distribution of Map2 and the microglia marker IBA1 in the hippocampus after pilocarpine-induced SE from 4 hrs to 35 days. We found a decline in Map2 immunoreactivity in the CA1 area that reached minimal levels at 14 days post-SE and partially increased thereafter. In contrast, maximal microglia accumulation occurred in the CA1 area at 14 days post-SE. Our data indicate that SE-induced Map2 and microglial changes parallel each other's spatiotemporal profiles. These findings may lay the foundation for future mechanistic studies to help identify potential roles for microglia in the dendritic pathology associated with SE and epilepsy.


Subject(s)
CA1 Region, Hippocampal/pathology , Microglia/pathology , Microtubule-Associated Proteins/analysis , Pilocarpine/administration & dosage , Status Epilepticus/chemically induced , Status Epilepticus/pathology , Animals , Immunohistochemistry , Male , Miotics , Muscarinic Agonists , Rats, Sprague-Dawley , Spatio-Temporal Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...